在医学领域,MRI的地标检测在减少扫描计划,图像登记等中的任务中减少医疗技术人员努力方面发挥着重要作用。首先,88个地标在三个相应的观点中分布在三个相应的观点中 - 矢状,冠状动脉和轴向手动注释,专家临床技术人员的后期准则被划分解剖学,以便更好地定位现有地标,以便即使在斜扫描中也定位重要的地图标志性地标。为了克服有限的数据可用性,我们实施现实的数据增强以生成合成3D容量数据。我们使用修改后的HIGHRES3DNET模型来解决脑MRI容量的地标检测问题。为了在视觉上解释我们的培训模型,并从较弱的模型中辨别更强的模型,我们实现了梯度加权类激活映射(GRAC-CAM),它产生突出显示模型聚焦的区域的粗糙定位图。我们的实验表明,该方法显示出有利的结果,并且整个管道可以扩展到可变数量的地标和其他解剖。
translated by 谷歌翻译
生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
与幸福,悲伤,恐惧,愤怒,厌恶,令人厌恶,令人厌恶的六种基本情绪不同,在价值(积极性 - 消极性)和唤醒(强度)方面的建模和预测尺寸影响已被证明是更加灵活,适用和对自然主义有用的真实世界的设置。在本文中,我们的目标是当用户在不同难度级别(基线,容易,艰难和压力条件)下的多个工作样任务时推断用户面部影响,包括(i)他们承接的办公室样地址少物理要求但需要更大的精神菌株的任务; (ii)一种装配线状设置,需要使用精细电机技能; (iii)代表远程工作和电话会议的办公室类似的环境。符合此目的,我们首先设计具有不同条件的研究,并从12个科目收集多模式数据。然后,我们用各种机器学习模型执行多个实验,并找到:(i)面部影响的显示和预测因非工作而异; (ii)通过在类似上下文中捕获的数据集可以升高预测能力; (III)段级(光谱表示)信息对于改善面部影响预测至关重要。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
The pandemic of these very recent years has led to a dramatic increase in people wearing protective masks in public venues. This poses obvious challenges to the pervasive use of face recognition technology that now is suffering a decline in performance. One way to address the problem is to revert to face recovery methods as a preprocessing step. Current approaches to face reconstruction and manipulation leverage the ability to model the face manifold, but tend to be generic. We introduce a method that is specific for the recovery of the face image from an image of the same individual wearing a mask. We do so by designing a specialized GAN inversion method, based on an appropriate set of losses for learning an unmasking encoder. With extensive experiments, we show that the approach is effective at unmasking face images. In addition, we also show that the identity information is preserved sufficiently well to improve face verification performance based on several face recognition benchmark datasets.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译